HOT WATER

HWMBS 8080-D A

Chauffe-eau pompe à chaleur monobloc 80 litres série "Ducted kitchen"

Chauffe-eau pompe à chaleur monobloc, conçu pour être installé à l'intérieur du meuble colonne de cuisine

R134A | Gaz réfrigérant

60° C | Eau chaude avec le compresseur uniquement Cycle anti-légionelle

Résistance exceptionnelle à la corrosion grâce à

la **technologie Duplex**

ErP Ready

PERFORMANCES

MODÈLE	CHARGE	CLASSE ÉNERGÉTIQUE	COP Conformément à EN 16147
HWMBS 8080-D A	80 L	₹ _M A++	4,20

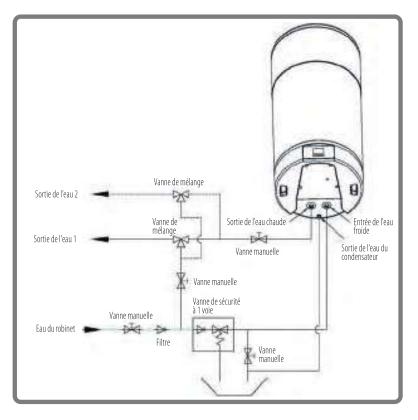
Modèle			HWMBS 8080-D A	
Volume du réservoir			NWMD3 OUGU-JA 80	
Bobine d'intégration solaire (acier inoxydable)		m2	non présente	
Puissance thermig		W	non presente 1050	
		W		
Absorption électric			250	
Capacité production	in ECS nominale i	L/h	20	
COP nominal 1		W/W	4,2	
COPDHW2		W/W	3,04	
Profil du cycle de test2		-	<u>M</u>	
Temps de chauffage2		hh:mm	03:42	
Volume eau chauc		L	116	
Classe d'efficacité		-	A++	
Degré de protectio		-	IPX1	
Plage de réglage de la Temp. de l'eau chaude		%	38~70 (50 default)	
Temp. max. eau chaude compresseur uniquement		%	60	
Données	Alimentation	Ph-V-Hz	1-220~240V-50Hz	
électriques	Résistance électrique intégrative	W	1500	
electriques	Courant maximum (résistance incluse)	A	8,30	
	Réfrigérant4	Type (GWP)	R134a (1430)	
Données du circuit	Quantité	kg	0,65	
frigorifique	Tonnes équivalent CO2	t	0,930	
	Compresseur	type	Rotatif ON/OFF	
	Dimensions (Diamètre x Hauteur)	mm	520 x 1160	
Spécifications du	Poids net	kg	50	
produit	Niveau de puissance sonore	dB(A)	46	
	Niveau de pression sonore à 2 m	dB(A)	31	
	Matériau du réservoir	-	Acier Duplex	
	Raccordements ECS	pouces	G1/2" (DN15)	
Réservoir	Connexions de bobines solaires	pouces	-	
	Type d'anode	-	Non présent	
	Pression de service maximale	bar	10	
Air aspiré	Champ de travail	°C	-5~+43	
	Débit d'air (avec conduit)	m³/h	300	
	Pression statique du ventilateur	Pa	60	
	Conduit d'air - Diamètre	mm	120	
	Conduit d'air- Longueur Max	m	8	

^{1.} Conditions: air aspiré 20° C BS (15° C BH), eau en entrée 15° C / sortie 55° C. 2. Test selon EN16147; air 20° C.
3. Directive 2009/125/CE - ERP UE n. 814/2013. 4. Les pertes de réfrigérant contribuent au changement climatique. Lorsqu'ils sont rejetés dans l'atmosphère, les réfrigérants ayant un potentiel de réchauffement global (PRG) plus faible contribuent moins au réchauffement climatique que ceux ayant un GWP plus élevé. Cet appareil contient un réfrigérant ayant un GWP de 1430. Si 1 kg de ce réfrigérant était rejeté dans l'atmosphère, l'impact sur le réchauffement climatique serait donc 1430 fois supérieur à 1 kg de CO2, sur une période de 100 ans. L'utilisateur ne doit en aucun cas tenter d'intervenir sur le circuit frigorifique ou de démonter le produit. Si nécessaire, contactez toujours du personnel qualifié.

CONFORT À LA MAISON

Conçue pour être installée dans la cuisine, comme une chaudière traditionnelle, la série "Ducted Kitchen" se positionne confortablement à l'intérieur du meuble colonne de la cuisine, avec expulsion de l'air vers l'extérieur.

AVERTISSEMENTS D'INSTALLATION


- Il est obligatoire d'installer une vanne de sécurité et anti-retour sur l'arrivée d'eau froide. Dans le cas contraire, l'équipement pourrait être sérieusement endommagé. Utilisez une vanne avec un réglage de 0,7 MPa. Pour l'emplacement d'installation, reportez-vous au schéma de raccordement de la tuyauterie.
- 2. Le tuyau de vidange de la vanne de sécurité doit descendre verticalement et ne doit pas être placé dans un environnement à risque de gel.
- 3. L'eau doit pouvoir s'écouler librement du tuyau et son extrémité doit être laissée libre.
- 4. La vanne de sécurité doit être testée régulièrement pour vérifier son fonctionnement et éliminer le calcaire qui pourrait la bloquer.

SÉCURITÉ

Le réservoir est fabriqué en Duplex, une variété d'acier inoxydable extrêmement solide et résistante à la corrosion.

Système anti-légionelles: le danger des bactéries légionelles est évité grâce à des cycles périodiques qui élèvent la température de l'eau à l'intérieur du réservoir au-dessus de 65° C.

SCHÉMA DE CONNEXION HYDRAULIQUE

HOT WATER

HWMBS 2201 A | HWMBS 2301 A | HWMBS 2401 A

Chauffe-eau pompe à chaleur monobloc 200/300/400 litres série "Ducted"

Chauffe-eau pompe à chaleur monobloc au sol

R134A | Gas réfrigérant

Réservoir en acier Inoxydable

60° C | Eau chaude avec le seul compresseur

Cycle anti-légionelle | Personnalisable pour

différents besoins ou excluable

Panneau de commande innovant au toucher doux pour faciliter la mise en service, l'utilisation et la maintenance

PERFORMANCES

MODÈLE	CHARGE	CLASSE ÉNERGÉTIQUE	COP Conformément à EN 16147
HWMBS 2201 A	200 L	ᠼ ι A	2,64
HWMBS 2301 A	300 L	₹ _{XL} A	2,69
HWMBS 2401 A	400 L	₹ _{XL} A	2,81

Modèle			HWMBS 2201 A	HWMBS 2301 A	HWMBS 2401 A	
Volume du rése		L	200	300	400	
Bobine d'intégration solaire (acier inoxydable)		m2	non présente	non présente	non présente	
	Puissance thermique nominale1		2020	2020	2020	
Absorption élec	trique nominale1	W	486	486	486	
Capacité produ	ction ECS nominale1	L/h	43,2	43,2	45	
COP nominal1		W/W	4,16	4,16	4,16	
COPDHW2	COPDHW2		2,64	2,69	2,81	
Profil du cycle o	de test ²	-	L	XL	XL	
Volume de l'eau chaude à 40°2		L	251	380	439	
Classe d'efficaci	ité énergétique ³	-	A	A	A	
Degré de protec	ction IP	-	IPX1	IPX1	IPX1	
Plage de réglag	e de la température de l'eau chaude	°(10~70 (50 défaut)	10~70 (50 défaut)	10~70 (50 défaut)	
Temp. maxima	Temp. maximale de l'eau chaude compresseur uniquement		60	60	60	
D /	Alimentation	Ph-V-Hz	1-220~240V-50Hz			
Données électriques	Résistance électrique supplémentaire	W	1500			
electriques	Courant maximum (résistance incluse)	A	10,0	10,0	10,0	
D	Réfrigérant4	Type (GWP)	R134a (1430)	R134a (1430)	R134a (1430)	
Données du circuit	Quantité	kg	0,80	0,80	0,80	
frigorifique	Tonnes équivalent CO2	t	1,144	1,144	1,144	
myoniique	Compresseur	type		Rotatif ON/OFF		
	Dimensions (Diamètre x Hauteur)	mm	560 x 1755	640 x 1850	700 x 1880	
Spécifications	Poids net	kg	90	100	110	
du produit	Niveau de puissance sonore	dB(A)	55	56	56	
	Niveau de pression sonora à 2 m	dB(A)	46	46	38	
	Matériau du réservoir	-	Acier inoxydable 304			
	Connexions ECS	pouces	G1" (DN25)	G1" (DN25)	G1" (DN25)	
Réservoir	Connexions bobine solaire	pouces	-	-	-	
	Type d'anode	-	Électrode en titane avec LED d'alarme			
	Pression maximale de service	bar	10	10	10	
Air aspiré	Champ de travail	%	-5~+43			
	Débit d'air (avec canalisation)	m3/h	400	400	450	
	Pression statique du ventilateur	Pa	60	60	60	
	Canalisation de l'air - Diamètre	mm	177	177	177	
	Canalisation de l'air - Longueur Max	m	6	6	6	

^{1.} Conditions: air aspiré 20° C BS (15° C BH), eau d'entrée 15° C / sortie 55° C . 2. Test selon EN16147, air 15° C pour les modèles 200, 300 et 400L.
3. Directive 2009/125/CE - ERP UE n. 814/2013. 4. Les pertes de réfrigérant contribuent au changement climatique. Lorsqu'ils sont rejetés dans l'atmosphère, les réfrigérants ayant un potentiel de réchauffement global (PRG) plus faible contribuent moins au réchauffement climatique que ceux ayant un GWP plus élevé. Cet appareil contient un réfrigérant ayant un GWP de 1430. Si 1 kg de ce réfrigérant était rejeté dans l'atmosphère, l'impact sur le réchauffement climatique serait donc 1430 fois supérieur à 1 kg de CO2, sur une période de 100 ans. L'utilisateur ne doit en aucun cas tenter d'intervenir sur le circuit frigorifique ou de démonter le produit. Si nécessaire, contactez toujours du personnel qualifié.

LE CONFORT À LA MAISON

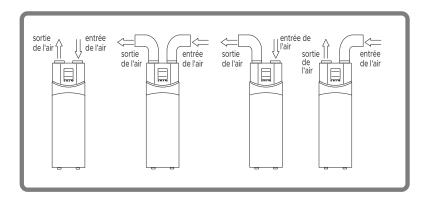
Programmation pour profiter d'éventuelles plages horaires avantageuses sur le tarif de l'électricité et disposer d'eau chaude en cas de besoin.

Deux modes de fonctionnement: économie maximale avec l'utilisation du compresseur seul ou vitesse maximale avec l'utilisation simultanée de la pompe à chaleur et de la résistance électrique intégrée, pour produire de grandes quantités d'ECS en peu de temps.

SÉCURITÉ

L'échangeur thermique étant externe au réservoir, aucune contamination entre l'eau et le réfrigérant n'est possible.


Système anti-légionelles: le danger des bactéries légionelles est évité grâce à des cycles périodiques qui élèvent la température de l'eau à l'intérieur du réservoir au-dessus de 65° C.


L'anode en titane protège le réservoir de l'action corrosive de l'eau de manière inépuisable : elle garantit une plus grande fiabilité et des coûts de maintenance inférieurs par rapport à une solution avec une anode en magnésium.

AVERTISSEMENTS D'INSTALLATION

- Il est obligatoire d'installer une vanne de sécurité et anti-retour sur l'arrivée d'eau froide. Dans le cas contraire, l'équipement pourrait être sérieusement endommagé. Utilisez une vanne avec un réglage de 0,7 MPa. Pour l'emplacement d'installation, reportez-vous au schéma de raccordement de la tuyauterie.
- 2. Le tuyau de vidange de la vanne de sécurité doit descendre verticalement et ne doit pas être placé dans un environnement à risque de gel.
- 3. L'eau doit pouvoir s'écouler librement du tuyau et son extrémité doit être laissée libre.
- 4. La vanne de sécurité doit être testée régulièrement pour vérifier son fonctionnement et éliminer le calcaire qui pourrait la bloquer.

SCHÉMA DE CONNEXION HYDRAULIQUE

