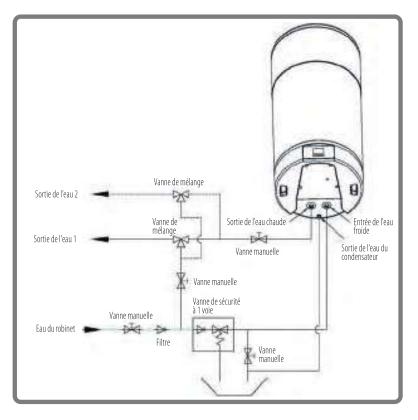


CONFORT À LA MAISON

Conçue pour être installée dans la cuisine, comme une chaudière traditionnelle, la série "Ducted Kitchen" se positionne confortablement à l'intérieur du meuble colonne de la cuisine, avec expulsion de l'air vers l'extérieur.

AVERTISSEMENTS D'INSTALLATION


- Il est obligatoire d'installer une vanne de sécurité et anti-retour sur l'arrivée d'eau froide. Dans le cas contraire, l'équipement pourrait être sérieusement endommagé. Utilisez une vanne avec un réglage de 0,7 MPa. Pour l'emplacement d'installation, reportez-vous au schéma de raccordement de la tuyauterie.
- 2. Le tuyau de vidange de la vanne de sécurité doit descendre verticalement et ne doit pas être placé dans un environnement à risque de gel.
- 3. L'eau doit pouvoir s'écouler librement du tuyau et son extrémité doit être laissée libre.
- 4. La vanne de sécurité doit être testée régulièrement pour vérifier son fonctionnement et éliminer le calcaire qui pourrait la bloquer.

SÉCURITÉ

Le réservoir est fabriqué en Duplex, une variété d'acier inoxydable extrêmement solide et résistante à la corrosion.

Système anti-légionelles: le danger des bactéries légionelles est évité grâce à des cycles périodiques qui élèvent la température de l'eau à l'intérieur du réservoir au-dessus de 65° C.

SCHÉMA DE CONNEXION HYDRAULIQUE

HOT WATER

HWMBS 2201 HEA | HWMBS 2301 HEA

HWMBS 2401 HEA | **HWMBS 4401 HEA (NEW)**

Chauffe-eau pompe à chaleur monobloc 200/300/400 litres série "Ducted"

NEW 2024 HWMBS 4401 HEA

Chauffe-eau au sol avec possibilité d'intégration avec du solaire thermique

R134A | Gas réfrigérant

Réservoir en acier Inoxydable

60° C | eau chaude avec le compresseur uniquement

Cycle anti-légionelle | Personnalisable pour différents besoins ou excluable

Panneau de commande innovant soft touch pour faciliter la mise en service, l'utilisation et la maintenance ErP Ready

Possibilité

PERFORMANCES

MODÈLE	CHARGE	CLASSE ÉNERGÉTIQUE	COP Conformément à EN 16147
HWMBS 2201 HEA	200 L	♣ ι A	2,61
HWMBS 2301 HEA	300 L	₹ _{XL} A	2,68
HWMBS 2401 HEA	400L	₹ _{XL} A	2,61
HWMBS 4401 HEA	400 L	₹ _{XL} A	2,62

٠	
i	~
1	>
İ	ш
Ė	₹

Modèle			HWMBS 2201 HEA	HWMBS 2301 HEA	HWMBS 2401 HEA	HWMBS 4401 HEA*	
Volume du réservoir			200	300	400	400	
Bobine d'intégration solaire (acier inoxydable)		m2	1.0	1.0	1,0	1.0	
	migue nominale1	W	2040	2040	2060	3285	
Absorption électrique nominale1		W	465	460	477	895	
Capacité de production ECS nominale1		L/h	43.5	43,5	45,0	70,5	
COP nominal ¹		W/W	4,39	4,43	4,32	3,67	
COPDHW2		W/W	2,61	2,68	2,61	2,62	
Profil du cycle	de test2	-	L	XL	XL	XL	
Volume d'eau chaude à 40°2		L	250	390	434	434	
Classe d'efficacité énergétique ³		-	A	A	A	A	
Degré de protection IP		-	IPX1	IPX1	IPX1	IPX1	
Plage de réglage de la température de l'eau chaude		°C	10~70 (50 défaut)	10~70 (50 défaut)	10~70 (50 défaut)	10~70 (50 défaut)	
Temp. max. de	e l'eau chaude compresseur uniquement	%	60	60	60	60	
Données électriques	Alimentation	Ph-V-Hz	1-220~240V-50Hz				
	Résistance électrique supplémentaire	W	1500				
	Courant maximum (résistance incluse)	A	10,0	10,0	10,0	13,0	
Données du circuit frigorifique	Réfrigérant4	Type (GWP)	R134a (1430)	R134a (1430)	R134a (1430)	R134a (1430)	
	Quantité	kg	1,0	1,0	1,0	0,9	
	Tonnes équivalent CO2	t	1,430	1,430	1,430	1,287	
	Compresseur	type	Rotatif ON/OFF				
	Dimensions (Diamètre x Hauteur)	mm	560 x 1755	640 x 1850	700 x 1880	700 x 1880	
Spécifications	Poids net	kg	95	105	115	118	
du produit	Niveau de puissance sonore	dB(A)	58,2	58,2	58	59,2	
	Niveau de pression sonore à 2 m	dB(A)	37,8	37,8	38	37,2	
Réservoir Cor Typ	Matériau du réservoir	-	Acier inoxydable 304				
	Connexions ECS	pouces	G1" (DN25)	G1" (DN25)	G1" (DN25)	G1" (DN25)	
	Connexions bobine solaire	pouces	G3/4" (DN20)	G3/4" (DN20)	G3/4" (DN20)	G3/4" (DN20)	
	Type d'anode	-	Électrode en titane avec LED d'alarme				
	Pression maximale de service	bar	10	10	10	10	
Air aspiré	Champs de travail	°(-5~+43				
	Débit d'air (avec canalisation)	m3/h	400	400	450	800	
	Pression statique du ventilateur	Pa	60	60	60	60	
	Canalisation de l'air - Diamètre	mm	177	177	177	177	
	Canalisation de l'air - Longueur Max	m	6	6	6	6	

^{*} DRAFT: données susceptibles d'être modifiées sans préavis.

1. Conditions: air aspiré 20° C BS (16° C BH), eau d'entrée 15° C / sortie 55° C . 2. Test selon EN16147, air 7° C.
3. Directive 2009/125/CE - ERP UE n. 814/2013. 4. Les pertes de réfrigérant contribuent au changement climatique. Lorsqu'ils sont rejetés dans l'atmosphère, les réfrigérants ayant un potentiel de réchauffement global (PRG) plus faible contribuent moins au réchauffement climatique que ceux ayant un GWP plus élevé. Cet appareil continu un réfrigérant ayant un GWP de 1430. Si 1 kg de ce réfrigérant était que de démonter l'appareil continuent moins au réchauffement climatique serait donn 1430 fois supérieur à 1 kg de CO2, sur une période de 100 ans. L'utilisateur ne doit en aucun cas tenter d'intervenir sur le circuit frigorifique ou de démonter le produit. Si nécessaire, contactez toujours du personnel qualifié.

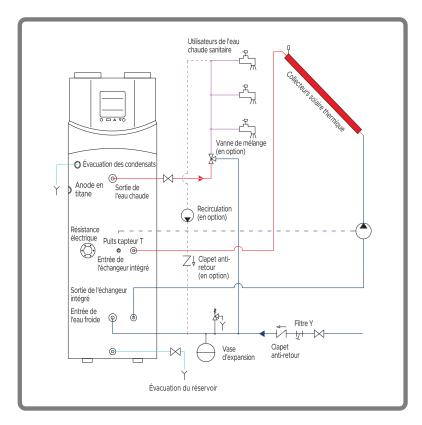
LE CONFORT À LA MAISON

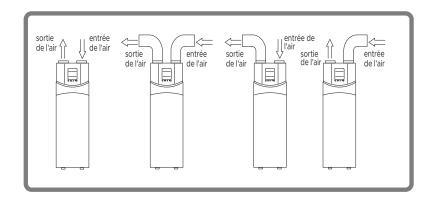
Programmation pour profiter d'éventuelles plages horaires avantageuses sur le tarif de l'électricité et disposer d'eau chaude en cas de besoin.

Deux modes de fonctionnement: économie maximale avec l'utilisation du compresseur seul ou vitesse maximale avec l'utilisation simultanée de la pompe à chaleur et de la résistance électrique intégrée, pour produire de grandes quantités d'ECS en peu de temps.

SÉCURITÉ

L'échangeur thermique étant externe au réservoir, aucune contamination entre l'eau et le réfrigérant n'est possible.


Système anti-légionelles: le danger des bactéries légionelles est évité grâce à des cycles périodiques qui élèvent la température de l'eau à l'intérieur du réservoir au-dessus de 65° C.


L'anode en titane protège le réservoir de l'action corrosive de l'eau de manière inépuisable : elle garantit une plus grande fiabilité et des coûts de maintenance inférieurs par rapport à une solution avec une anode en magnésium.

AVERTISSEMENTS D'INSTALLATION

- Il est obligatoire d'installer une vanne de sécurité et anti-retour sur l'arrivée d'eau froide. Dans le cas contraire, l'équipement pourrait être sérieusement endommagé. Utilisez une vanne avec un réglage de 0,7 MPa. Pour l'emplacement d'installation, reportez-vous au schéma de raccordement de la tuyauterie.
- 2. Le tuyau de vidange de la vanne de sécurité doit descendre verticalement et ne doit pas être placé dans un environnement à risque de gel.
- 3. L'eau doit pouvoir s'écouler librement du tuyau et son extrémité doit être laissée libre
- 4. La vanne de sécurité doit être testée régulièrement pour vérifier son fonctionnement et éliminer le calcaire qui pourrait la bloquer.

SCHÉMA DE CONNEXION HYDRAULIQUE

